Oregon State

Oregon State

Oregon State

Overview of presentation

- · Introduction to organic blueberry industry
- · Soil amendments when establishing plantings
- · Mulching in the row: Impacts on weed control and soil properties
- Research study results on best systems: Planting method; mulch; fertilizer source and rate; leaf tissue testing
- Summary of best practices

Advantages to berry production in western USA

- · Dry summers reduce incidence of weeds and diseases
- Some major insect pests are not present in this region
- Temperate climate: Relatively low risk of winter cold injury; good weather during bloom (good fruit set)
- Strong industry support and opportunities for grant funding through levied funds
 Industry asked for organic production systems research in mid-2000s

Common traits of soil good for blueberry

- · No issues with prior crops (pests)
- Good drainage (impact on root growth & disease)
- Suitable pH (4.5 to 5.5; or pH can be modified)
- · Suitable organic matter content (or can be modified)

Organic matter (OM)

- Soil OM ideally greater than 4%
- If not then amending soil prior to planting by adding appropriate material is recommended
- Additionally, soil OM may be improved after planting when mulching with organic materials
- Type of organic amendment is important in blueberry

Compost type	pH	EC	Comments
Dairy	7.6	6.1	C:N <12; excess N (2+%)
Horse	7.8	7.8	C:N <12; excess N (2+%)
Yard debris	7.0	4.0	C:N 12-25; 1-2% N
Leaf debris	7.4	2.2	
Peat	4.8	0.7	
Sawdust; wood chips	4.5-5.2	0.4	C:N 200+; deficient N
Adapted from	D. Sullivan, OSI	J; pH and EC by	saturated media extract (SME)

salty" for use as a pre-plant amendment and in high amounts after planting

Symptoms of high soil pH

- Only 'Duke' showed classic symptoms of high pH ("lime induced iron deficiency")
- Other cultivars had no symptoms but also had lower yield
- Thus very important to monitor soil pH and adjust during planting life as needed

Compost type	pH	EC	Comments	1
Dairy	7.6	6.1	C:N <12; excess N (2+%)	
Horse	7.8	7.8	C:N <12; excess N (2+%)	
Yard debris	7.0	4.0	C:N 12-25; 1-2% N	
Leaf debris	7.4	2.2		L
Peat	4.8	0.7		
Sawdust; wood chips	4.5-5.2	0.4	C:N 200+; deficient N	
Adapted fro	m D. Sullivan, OSU	J; pH and EC b	y saturated media extract (SME)	-
Il materials with an E	C (salt conte	nt) above	1.5 dS/m are too	

Organic mulch layer

- In early 2000s, a sawdust mulch layer was most common
 Applied to soil (bed) surface soon after planting
 - Few inches deep, replenished every few years, as needed
 - Organic growers were using compost as a slow-release nutrient source & goal of increasing OM as part of the mulching program

Region	Western Oregon Revised ²	Western Washington ^y	Eastern Washington ^y	Michigan [×]
Sampling time	Late July to early Aug.	Mid- to late Aug.	Mid- to late Aug.	Mid- July to mid-Aug.
Nitrogen (%N)	1.40 to 2.20	1.50 to 2.00	1.25 to 1.75	1.7 to 2.1
Phosphorus (%P)	0.08 to 0.20	0.10 to 0.20	0.08 to 0.15	0.08 to 0.4
Potassium (%K)	0.40 to 0.55	0.50 to 0.65	0.40 to 0.50	0.4 to 0.65
Calcium (%Ca)	0.40 to 0.80	0.50 to 0.85	0.50 to 0.85	0.3 to 0.8
Magnesium (%Mg)	0.10 to 0.25	0.15 to 0.20	0.11 to 0.17	0.15 to 0.3
Sulfur (%S)	0.10 to 0.16	0.12 to 0.15	0.12 to 0.15	0.12 to 0.2
Manganese (ppm Mn)	100 to 300	100 to 300	100 to 300	50 to 350
Boron (ppm B)	30 to 80	40 to 70	30 to 60	25 to 70
Iron (ppm Fe) Zinc (ppm Zn)	45 to 300 8 to 20	60 to 200 10 to 25 5 to 10	60 to 200 10 to 15	60 to 200 8 to 30
Copper (ppm Cu)	3 to 10	5 to 10 5 to 10		5 to 20
	Strik & Davis (2021)	Davenport & Devetter (2019)		Hanson and Hancock (1996)
regardless of fro	cent full-expanded uiting season, but I utside range may in	keep samples se	parate	Oregon St

