

Lessons Learned from the Reduced-tillage Organic Systems Experiment W.S. Curran, J.M. Wallace, R. Hoover Pennsylvania State University

Outline

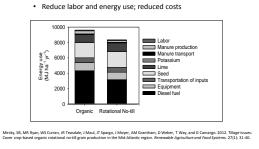
- Rationale
- Objectives & Methods
- Expectations & Results On-Station
- Expectations & Results On-Farm
- Summary & Recommendations

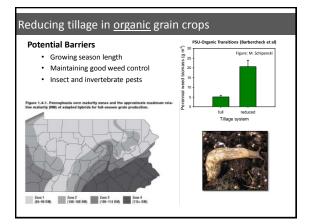
Reducing Tillage in Mid-Atlantic Region

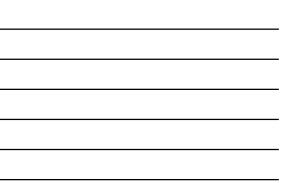
Regional perspective

- Important watershed with historical problems
- Diverse agriculture
- High density animal agriculture
- No-till enthusiasm
- Lots of interest in cover crops and some adoption
- Incentive programs for no-till and cover crops
- Interest in sustainable and organic agriculture

The role of tillage in organic grain production


- Backbone of weed control • Primary tillage for perennials • Mechanical control of annuals
- Incorporate fertility sources
- Control insects and diseases
- Terminate perennials and green manure cover crops


Reducing tillage in <u>organic</u> grain crops

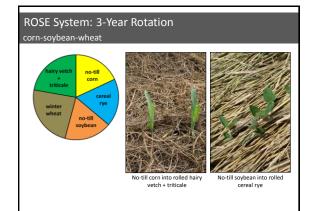

Potential Benefits

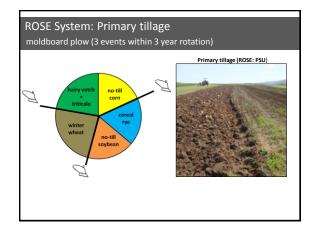
Protect soil against erosion/loss in quality

Approaches to reducing tillage in organic systems

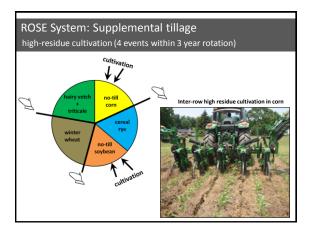
- · Continuous no-till not realistic at this time
- Rotational tillage or reduced tillage
 - Use perennial crops in the rotation (ex. Alfalfa)
 - Reduce tillage intensity (chisel vs. moldboard plow)
 - Reduce tillage frequency (cover crops & cultural practices)

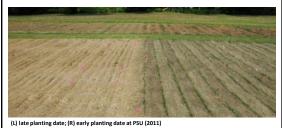
Roller Crimper Technology Cover crop termination & No-till Cash Crop Planting




· Evaluate suitability of the ROSE rotation across the Mid-Atlantic region Research funding: USDA OREI Award No. 2009-51300-05656 USDA-NIFA-ICGP-002796


Reduced-tillage Organic Systems Experiment (ROSE) Methods


- Design: Full entry cropping systems experiment from 2010 to 2013.
- . Replicated at 3 sites: State College, PA (3050 GDD) Beltsville, MD (3650 GDD) Georgetown, DE (4350 GDD)
- On farm trials: Pennsylvania Maryland North Carolina



ROSE: Experimental Treatments

Cover crop termination & cash crop planting date (3 planting dates)

- Treatment: Planting date (early, middle, late); corn & soybean only
- Cover crops terminated at (corn) or prior to (soybean) cash crop planting
- Planting dates spaced about 1 wk apart

ROSE: Experimental Treatments

Supplemental Weed Control with High Residue Cultivator

- Treatment: high residue cultivation vs. none
- High residue cultivation conducted twice per crop season in corn and soybeans
- Corn and soybeans planted in 30" rows (non cultivated soybean in 15" rows)

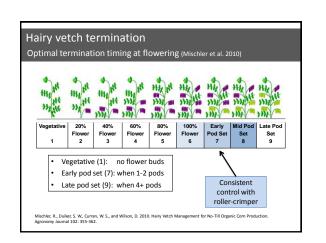
ROSE: Experimental Treatments

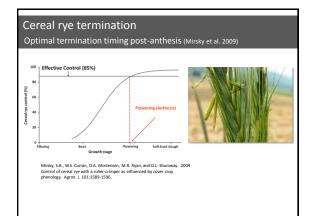
Standard variety vs. variety varied with planting date

- Treatment: Variety Type (standard vs. variable)
- Variable variety matches maturity group with variable season length for planting date treatments.

Crop	Site	Planting Date	Maturity (day /group
Corn		Early	104
	DE MD	Middle	96
	WID	Late	85
		Early	100
	PA	Middle	95
		Late	85
Soybean	DE	Early	3.8
	MD	Middle	3.4
		Late	2.7
		Early	2.9
	PA	Middle	2.7
		Late	1.1

Things don't always go as planned

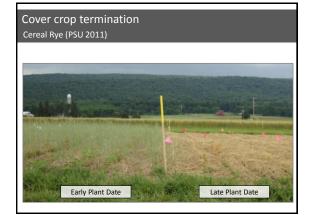

EXPECTATIONS & RESULTS

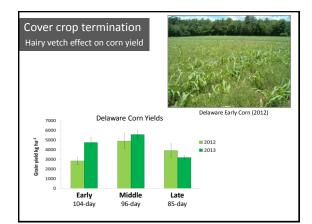

Cover crop termination timing

Expectation: The window for effective cover crop termination using the roller crimper is sufficiently wide to enable delayed cash crop planting.

Results

- 2011: one pass was not enough
- 2012 & 2013: two passes improved control
- We have a narrow window in which to control with a roller-crimper without producing volunteer cover crop

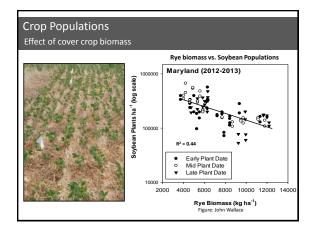



Middle Plant Date

 You may have to be able to live with a few volunteers

Early Plant Date

No-till planting into high-residue


 $\ensuremath{\mbox{Expectation:}}$ Standard no-till equipment is sufficient for establishing cash crops.

Expectation #2 Results

- Specialized no-till equipment can be necessary for this much residue
- Difficult to slice through residue – too dry
- Lack of seed furrow closure too wet
- Poor seed to soil contact reduced corn and soybean populations



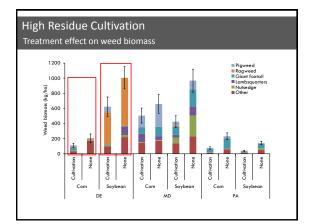
Crop Populations Effect of poor population stands on crop yield Crop Yields: Consistent crop yields were limited by factors related to poor crop establishment in high cover crop residue environments. 3500 Delaware 2012 12000 Maryland 2013 3000 10000 (e (kg/ha) (kg/ha) yield (kg/ 8000 2000 Pla 6000 1500 Corn grain 4000 ₹1000 2000 500 0 0 200000 400000 600000 20000 40000 60000 80000 0 Soybean population (plants/ha) Corn population (plants/ha)

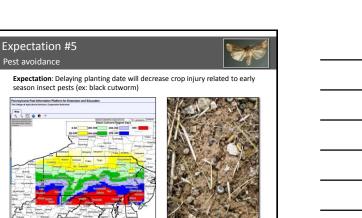
Expectation #3 Results

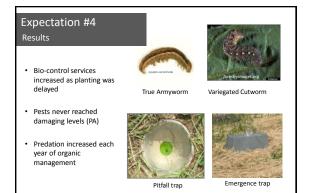
- Cover crop biomass accumulation did not increase linearly with delay in planting date – already near the peak at termination 1
- No consistent trend between cover crop biomass and weed abundance or biomass
- Weed biomass was also influenced by cover crop regrowth, cover crop volunteers, and cash crop populations

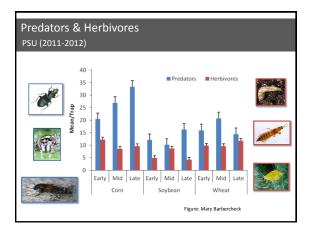
Expectation #4

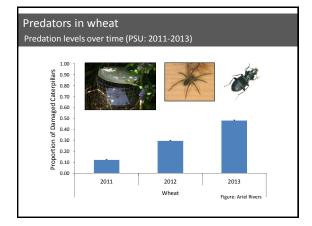
Supplemental weed control with high residue cultivation

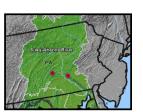





Results


- Shallow high-residue cultivator very effective at reducing weed biomass
- Improved yields where weed competition high (Delaware)
- Was not necessary where weed competition low (Pennsylvania) and can hurt soybean yield





On-Farm Projects in PA in Support of ROSE concepts overview

- Implement ideas from ROSE with appeal to farmers on larger plots (0.1-0.2 ac/plot)
- Design: Randomized Complete Block
 1) Conventional organic (full tillage)
 2) Roll cover crop, no-till plant soy or corn
 4 replicates
- Replicated at 3 sites: Ranck farm (Mifflin, SC PA) Reichert farm (Hershey, SE PA)
- 3 years at each farm (2010-2013):

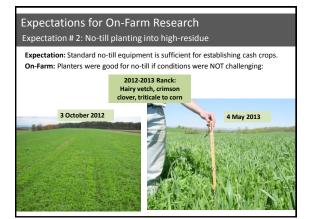
Expectations for On-Farm Research Expectation # 2: No-till planting into high-residue

Expectation: Standard no-till equipment is sufficient for establishing cash crops. Dn-Farm: Planters were good for no-till if conditions were NOT challenging: - Excessive amounts of rolled cover crop to slice through - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown down" and not rolled in an organized fashion - Cover crop "blown" - Cover crop blown - Cover crop "blown" - Cover crop blown" - Cover crop blown - Cover crop "blown" - Cover crop blown" - Cover crop bl

Expectations for On-Farm Research

Expectation # 2: No-till planting into high-residue

Expectation: Standard no-till equipment is sufficient for establishing cash crops.


Expectations for On-Farm Research

Expectation # 2: No-till planting into high-residue

Expectation: Standard no-till equipment is sufficient for establishing cash crops. On-Farm: Planters were good for no-till if conditions were NOT challenging:

- Excessive amounts of rolled cover crop to slice through
- Cover crop "blown down" and not rolled in an organized fashion

Expectations for On-Farm Research

Expectation # 2: No-till planting into high-residue

Expectation: Standard no-till equipment is sufficient for establishing cash crops. On-Farm: Planters were good for no-till if conditions were NOT challenging:

Expectations for On-Farm Research Expectation # 3: Weed suppression with rolled cover crops

Expectation: Heavy cover crops, to provide season-long mulch, are possible. On-Farm: Planting cover crop early enough, WITH enough fertility to result in adequate biomass, can be a challenge.

Expectations for On-Farm Research

Expectation # 3: Weed suppression with rolled cover crops

Expectation: Heavy cover crops, to provide season-long mulch, are possible. On-Farm: Planting cover crop early enough, WITH enough fertility to result in adequate biomass, can be a challenge.

2013 Reichert: Cereal rye to soybean

Rye cover crop too light (3-4000 lbs/ac)

Expectations for On-Farm Research

-

Expectation # 6: No-till drills capability similar to that of planters

Expectation: Today's heavy drills can get seed where we want it.

On-Farm: Not enough weight per opener to penetrate; without specially modified closing wheels, closing furrow under residue mat extremely challenging. 2012 Reichert:

Cereal rye to soybean

Summary of Results ROSE (2010-2013)

- Crop Yields: Crop yield was variable across years and sites, but acceptable yields can be achieved: Soybean: 70 bu/ac (MD 2011)
 - Corn Grain: 140 bu/ac (MD 2011) Corn Silage: 18 ton/ac (PA 2013)
- Insect pest management: Beneficial insects respond positively to • organic management and increase pest-suppression services
- Weed management: 1) perennials did not become a problem in 3 years but supplemental control necessary where annual weed density is high; 2) starting with a clean field will maximize the probability of being able to maintain good annual weed control

Recommendations for the Northeastern US ROSE (2010-2013)

- Hairy vetch-triticale and cereal rye cover crops
 - Can effectively control weeds in corn and soybean, but have great potential to become a weed if timing of termination relative to crop maturity is not aligned
 - Double rolling cover crops improved kill and decreased volunteers
- · No-till planting corn and soybean
 - Adjust equipment to ensure planter is slicing through residue, penetrating the soil, and achieving good seed-to-soil contact
 - High-residue cultivation
 - Effective back-up if weeds break though mulch and canopy, but also has potential to reduce crop population and yield, especially in soybean
- Other management lessons

 - Corn slage rather than grain necessary in PA for rye establishment, whereas fewer concerns about timing in MD and DE
 - Large difference in organic corn varieties, pays to have good genetics and crop maturity appropriate for the timing of planting
 - Planting corn late = less yield (go figure!)

THANK YOU

For more information, visit our webpage:

http://agsci.psu.edu/organic/research-and-extension/rotational-no-till Or contact:

Bill Curran (wcurran@psu.edu)

Question 1

- What region of the US do you work in?
 - Northeast
 - Southeast
 - Northern corn belt
 - Southern corn belt
 - High plains
 - Pacific Northwest
 - California (West Coast)
 - Other ___

Question 2

- What experience do you have with organic notill?
 - I have never tried it
 - I have a small amount of experience with it (3 times or less)
 - I have a moderate amount of experience with it (more than 3 times)
 - I have a lot of experience with this technique