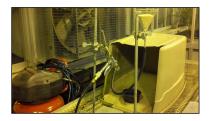
Blasting the competition away: Air-propelled abrasive grits for weed management in organic grain and vegetable crops



Sam Wortman¹, Frank Forcella², Sharon Clay³, Dan Humburg³, and Mohammad Babadoost¹

¹University of Illinois at Urbana - Champaign ²USDA-ARS, Morris, MN ³South Dakota State University

Webinar overview

- Brief history of the project
- Applicator and nozzle designs
- Applications in grain crops
- Applications in vegetable crops
- Future directions

Weeds are a top management concern for organic farmers

- Yield, quality, disease, and seedbank concerns
- OMRI-listed herbicides are not cost-effective
- Hand-weeding is expensive and difficult to source
- Heavy dependence on tillage

There are no silver bullets in organic weed management

- Need to employ "many little hammers"
- How can we control weeds that escape the crosshairs of cover crops, rotation, or tillage?

"Weed blasting" may serve as another little hammer

- Grits abrade weedy stem and leaf tissue
- · Destroy apical meristem in dicots
- Height differential between crop and weed essential

Frank Forcella demonstrated proof of concept

Potential use of abrasive air-propelled agricultural residues for weed control

F FORCELLA

Weed Technology 2012 26:161-164

sived 9 January 2009 ised version accepted 3 March 2009

Air-Propelled Abrasive Grit for Postemergence In-Row Weed Control in Field Corn

Frank Forcella*

Renewable Agriculture and Food Systems: 26(1); 31-37

doi:10.1017/S1742170510000438

Post-emergence weed control through abrasion with an approved organic fertilizer

Frank Forcella^{1,*}, Trevor James², and Anis Rahman²

¹North Central Soil Conservation Research Laboratory, USDA-ARS, 803 Iowa Avenue, Morris, MN 56267, USA. ²AgResearch, Ruakura Research Centre, Hamilton 3240, New Zealand. ²Corresponding author: frank Crocell@ars usda, gov

Accepted 30 August 2010; First published online 30 September 2010

GRIT APPLICATION CONTROLS WEEDS IN ORGANIC CROP PRODUCTION. 2014. M. Erazo-Barradas*¹, S. A. Clay¹, F. Forcella²; ¹South Dakota State University, Brookings, SD, ²USDA, Morris, MN. WSSA Abstract #268, Vancouver, BC.

Next stage was to scale-up the technology

- Awarded NCR-SARE grant to do just that
- Dan Humburg and students designed a fabricated first multi-row grit applicator

Weed blasting and applicator effective, but challenges remained

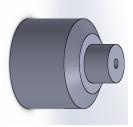
- Economics
- Logistics of grit sourcing and application on a large scale
- Applying organic fertilizers in vegetable crops helps to address these issues

Weed Technology 2014 28:243-252

Integrating Weed and Vegetable Crop Management with Multifunctional Air-Propelled Abrasive Grits

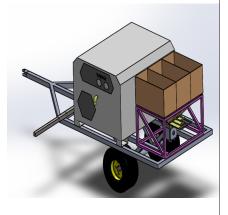
Sam E. Wortman*

Combined what we've learned thus far and identified new directions

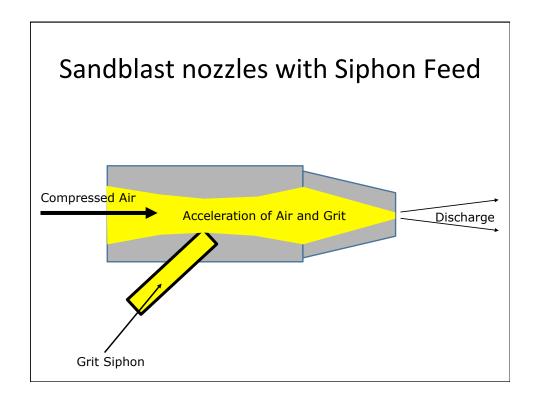

- USDA-NIFA OREI award
- Partnering with eOrganic
 - Webinars
 - YouTube videos
 - Articles

Webinar overview

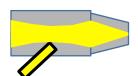
- Brief history of the project
- Applicator and nozzle designs
- Applications in grain crops
- Applications in vegetable crops
- Future directions


<u>PAGMan</u>: Air-<u>Propelled Abrasive Grit Management</u>

 4-Row, 8 Nozzles, Fully Mounted, PTO driven, ~100 PSI screw compressor


New design for research in vegetable crops - Objectives

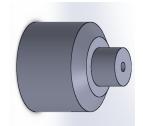
- Trailered design less lateral sway
- Adaptable to varying row practices
- Self contained power (ATV pulled?)
- Multiple product bins for research
- Early season two nozzles
- Single side nozzle for trellised crop
- Hand nozzle for research and spots
- Experiment with alternate grit

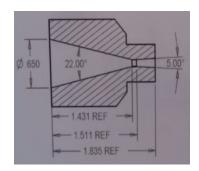


Grit Applicator Nozzles – System Objectives

- Achieve a high exit velocity of the grit
- Achieve the highest air velocities possible for the available supply
- Manage the grit application pattern geometry
- Achieve reliable, trouble free, mechanism for grit entrainment
- Allow for inexpensive experimentation with component design

Sandblast nozzles with Siphon Feed

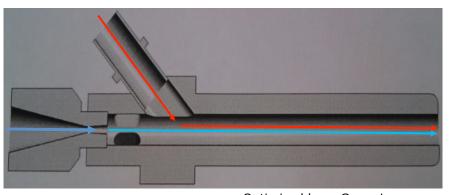

- Advantages of Siphon systems
 - Grit is accelerated with air to very high velocities
 - Feeding is simple in concept
- Disadvantages of Siphon systems
 - Feeding is poorly controlled
 - Grit tends to plug the discharge orifice if not uniform in size and feed rate
 - Nozzle wears rapidly and air and grit velocities will change with wear
 - Tip replacement required at ? intervals depending upon abrasive qualities


Pen Cage Nozzle Design Concept

- Design the throat of the system for air only
- Design orifice and expansion cone to maximize the efficient use the available air volume and pressure
- Achieve full expansion of the compressed air for maximum air velocity without shock waves
- Entrain grit into the high speed air stream at atmospheric pressure

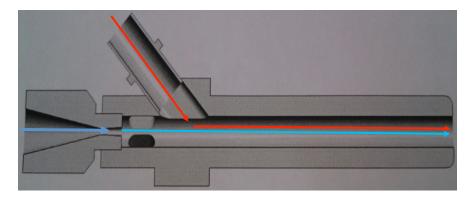
Nozzle Design- Lanoue PEN

- PEN: Perfectly Expanded Nozzle
 - Optimized for 100 PSI
 - Accelerates air to supersonic velocities
 - Utilizes high pressure low velocity air to disperse into low pressure high velocity air
 - OREI system will be optimized for higher air pressure



Nozzle Design - Lanoue CAGE

CAGE: Constant Area Grit Entrainment


- Openings near air nozzle prevent back pressure
- · Current design draws grit and some air in through side entry
- CAGE clamps to the nose of the PEN

Optimized by: Corey Lanoue

CAGE: Areas for study

- Constant area prevents back pressure and velocity fall as grit accelerates
- · Bore diameter has not been optimized
- · Vents have not been optimized
- Bore could change section shape while maintaining constant area

CAGE: Fabrication and Test of Alternates

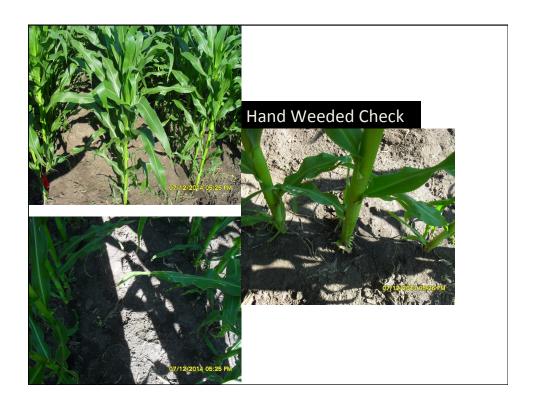
- Existing CAGE is machined from steel and brass.
 Slow and expensive
- Experimental CAGEs could be 3-D printed from plastic
 - Fast. SDSU has MakerBots that are appropriate for these parts
 - Much easier to achieve complex internal and external geometry
 - Easier to design to accommodate fittings for grit entry

Webinar overview

- Brief history of the project
- Applicator and nozzle designs
- Applications in grain crops
- Applications in vegetable crops
- Future directions

Recent field studies in field crops focused on IWM strategies

- Objectives were to examine weed control and corn silage yield in response to weed blasting in combination with:
 - Flame-weeding
 - Cultivation
- Various timings and frequencies


Single grit applications	Double grit applications	Triple grit application
V1	V1+V3	V1+V3+V5
V3	V1+V5	
V5	V3+V5	

Grits were applied at a rate of 385 lbs/acre (100 psi and speed of 1.5 mph)

Morris, MN: Early grit application (V1) reduced weed biomass by 71% and increased yield by 40% relative to a weedy check

	Stage	Within- Row	Yield (lb/ac)	% increase over Season Long Weedy Check	Weed Biomass Row (lb/ac)	% reduction from Season Long Weedy Check
Single applications	V1	Grit	16,960	+40	755	-71
	V3	Grit	15,649	+29.5	1,201	-54
	V5	Grit	12,937		448	-83
Double applications	V1+V3	Grit	17,130	+41.8	528	-80
	V1+V5	Grit	13,204		506	-80
	V3+V5	Grit	12,089		332	-87
Triple application	V1+V3+V5	Grit	13,293		598	-77
	Season Long Weedy Check	Control	12,080		2,630	
	Hand Weeded Check	Control	14,043		599	
LSD (0.05)			1,963		328	

Morris, MN: Flaming and cultivation reduced weed biomass in the inter-row area, but had less effect on yield

Stage	Flaming	Cultivated	Flaming	Cultivated	
	Yield	(lb/ac)	Weed Biomass (lb/ac)		
V1	-4%	+4%	105 (-93%)	315 (-80%)	
V3	-3%	+9%	610 (-60%)	526 (-66%)	
V5	0	+2%	1,051 (-32%)	263 (-83%)	
V1+V3	-4%	+4%	657 (-57%)	369 (-76%)	
V1+V5	-7%	0	762 (-51%)	552 (-64%)	
V3+V5	0	0	263 (-83%)	421 (-73%)	
V1+V3+V5	-6%	0	868 (-44%)	474 (-70%)	
Season Long Weedy Check			1,559 inter row	weed biomass	
Hand Weeded Check			3	64	
LSD (0.05)			236		

Results demonstrate the importance of in-row weed management

- Compared to the season long weedy treatment:
 - Blasting reduced in-row weed biomass from 54 to 80%
 - Blasting at V1 or V1+V3 increased corn yield by 40%
- Grit application at V5:
 - Resulted in 80% in-row weed biomass reduction
 - Weed interference permanently stunted corn growth and yield
- Inter-row flaming and cultivation reduced weeds by avg. of 63%, but little effect on yield

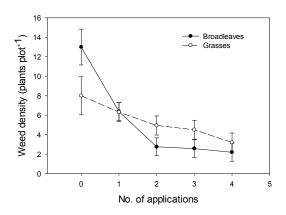
Webinar overview

- Brief history of the project
- · Applicator and nozzle designs
- Applications in grain crops
- Applications in vegetable crops
- Future directions

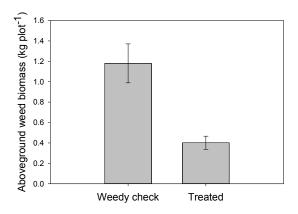
Vegetable trials conducted in 2013 and 2014 at Urbana, IL

- 2013 fresh market tomato
 - Diversified organic
 vegetables previous 4
 years
- 2014 green bell pepper
 - Conventional corn soy rotation previous 3 years

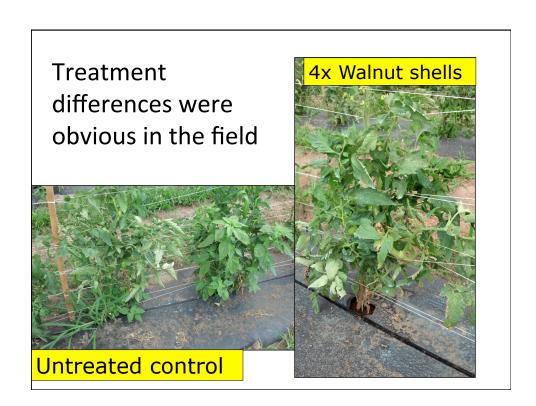



Abrasive grits applied between 1 and 4x

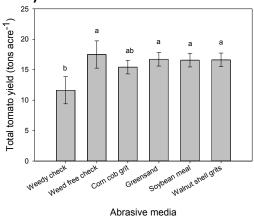
- Weeds between VC and V3 stage
- **Grits:** corn cob, walnut shells, soybean meal, greensand (2013)



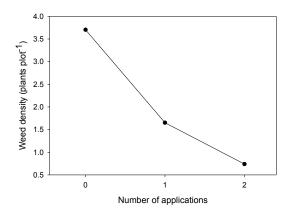
Weed density 37 days after 1st application in tomato



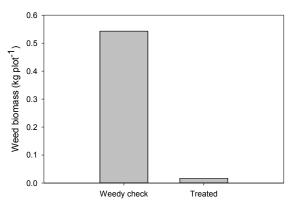
✓ Blasting reduced the density of both broadleaf and grass weeds by as much as 83.2 and 60.1%, respectively


End-of-season weed biomass in tomato

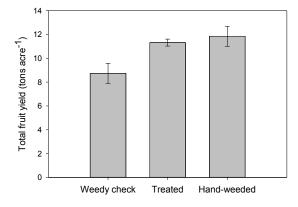
✓ Blasting, regardless of media or rate, reduced weed biomass by 66% relative to the weedy check



Total tomato yield (marketable and non-marketable)


- ✓ Blasting increased total tomato yield by up to 44%
- ✓ Ratio of M:NM not influenced by blasting

Weed density 25 days after 1st application in pepper


✓ Regardless of media, blasting 1x reduced weed density by 55% and blasting 2x reduced weed density by 80%

End-of-season weed biomass in pepper

✓ Blasting, regardless of media or number of blasts, reduced end of season weed biomass by 97%

Total pepper yield (marketable and non-marketable)

- ✓ Blasting increased yields by 29.5%
- ✓ Ratio of M:NM not influenced by blasting

Crop damage is a concern, but no disease or yield loss observed

Early weed growth stage is critical for effective control

Future research directions

- 1- or 2-row applicator for vegetable crops
- New nozzles and spray patterns
- On-farm trials in tomato, pepper, sweet corn, and cole crops, and corn and soybean
- Nitrogen mineralization and uptake from organic fertilizer grits (lab and field)
- Monitor diseases
- Integrating weed blasting with biodegradable and organic mulches, tillage, and flaming

Questions?

Contact information:

Dr. Sam Wortman
swortman@illinois.edu
Dr. Sharon Clay
Sharon.Clay@sdstate.edu
Dr. Dan Humburg
Daniel.Humburg@sdstate.edu
Dr. Frank Forcella
Frank.Forcella@ars.usda.gov

Project updates:

http://urbanag.cropsci.illinois.edu