Participatory Breeding and Testing Networks: A Maize Based Case Study for Organic Systems

Instagram: cornandsoilhealth
Website: eOrganic.info/CASH

Carmen Ugarte, Martin Bohn, Michelle Wander, Juan Andrade, Walter Goldstein, Christopher Mujjabi, Binod Ghimire, Ece Gulkirpik
Outline

• Identified needs in the organic sector – Where my seed comes from?
• The CASH project
• Participatory testing network—on-farm strip trials
• Participatory testing network—on-farm replicated trials
Challenges

• Greater percentage of germplasm comes from conventional breeding programs under high input conditions
• The growing environment in organically managed systems is inherently more diverse
• Seed currently being used, is produced using organic guidelines, but the germplasm was generally developed in more homogenous environments

Luby et al. 2018
Participatory Breeding & Testing Network
Participatory Network

Facilitate the exchange of needs/wants among producers, researchers, seed producers, and end users.

On-Farm Testing and Replicated trials

Screen materials for organic growing conditions.

Study weed and nutrient interactions with plant and soil health.

Business structure, sharing, and IP

Study business models, intellectual property, germplasm sharing structures that determine seed access.

Corn And Soil Health = CASH!
Why Strip Trials?

• Strip trials provide “real world” growing conditions
• To gather information about corn varieties of interest that have been identified by breeders in the network
 • Agronomic performance
 • Quality traits
• The information from the testing and educational networks is reported back to the breeders
 • Determine the future market potential of the tested corn varieties and,
 • Orient future breeding efforts (seed supply for the organic sector)
Strip Trials

- 2018 offered 15 cultivars selected from the U of I collection and 2 private breeding programs
 - Food grade quality
 - High protein (methionine)
 - N efficiency
 - Good agronomic characteristics
6 to 8 hybrids planted in about ¼ acre and managed with farmer standard management practices.
Hybrid Performance Across Locations

Illinois and Indiana

Iowa and Wisconsin
2018 Strip Trial Summary

- Sites had great variability in standard soil quality characteristics
- Across locations there were moderate to high yielding varieties
- Soils with improved levels of soil fertility had more stable yields
- Greater variability in yield performance was apparent in sandy soils
- Support the theory that ‘environment’ and soil quality characteristics should inform selection and testing of cultivars
Replicated Trials

• Investigate how corn cultivars respond to gradients of soil fertility and weed pressure
• Explore the effects of soil type and management on plant performance and soil health
<table>
<thead>
<tr>
<th>Rep</th>
<th>CC trt</th>
<th>N trt</th>
<th>4 row corn buffer</th>
<th>4 row corn buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>CC</td>
<td>N1</td>
<td>5 9 7 4 1 10 8 6 2 3</td>
<td>5 9 7 4 1 10 8 6 2 3</td>
</tr>
<tr>
<td></td>
<td>noCC</td>
<td>N1</td>
<td>5 9 7 4 1 10 8 6 2 3</td>
<td>5 9 7 4 1 10 8 6 2 3</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>N3</td>
<td>5 10 3 8 9 2 7 1 4 6</td>
<td>5 10 3 8 9 2 7 1 4 6</td>
</tr>
<tr>
<td></td>
<td>noCC</td>
<td>N3</td>
<td>5 10 3 8 9 2 7 1 4 6</td>
<td>5 10 3 8 9 2 7 1 4 6</td>
</tr>
<tr>
<td></td>
<td>noCC</td>
<td>N2</td>
<td>8 3 4 5 2 9 1 6 7 10</td>
<td>8 3 4 5 2 9 1 6 7 10</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>N2</td>
<td>8 3 4 5 2 9 1 6 7 10</td>
<td>8 3 4 5 2 9 1 6 7 10</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>N3</td>
<td>3 5 8 6 4 1 10 9 7 2</td>
<td>3 5 8 6 4 1 10 9 7 2</td>
</tr>
<tr>
<td></td>
<td>noCC</td>
<td>N3</td>
<td>3 5 8 6 4 1 10 9 7 2</td>
<td>3 5 8 6 4 1 10 9 7 2</td>
</tr>
<tr>
<td></td>
<td>noCC</td>
<td>N1</td>
<td>1 6 10 7 3 2 8 4 9 5</td>
<td>1 6 10 7 3 2 8 4 9 5</td>
</tr>
<tr>
<td></td>
<td>noCC</td>
<td>N1</td>
<td>1 6 10 7 3 2 8 4 9 5</td>
<td>1 6 10 7 3 2 8 4 9 5</td>
</tr>
<tr>
<td></td>
<td>noCC</td>
<td>N2</td>
<td>1 10 9 2 5 7 8 6 3 4</td>
<td>1 10 9 2 5 7 8 6 3 4</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>N2</td>
<td>1 10 9 2 5 7 8 6 3 4</td>
<td>1 10 9 2 5 7 8 6 3 4</td>
</tr>
<tr>
<td></td>
<td>noCC</td>
<td>N2</td>
<td>8 10 5 6 3 1 4 7 2 9</td>
<td>8 10 5 6 3 1 4 7 2 9</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>N2</td>
<td>8 10 5 6 3 1 4 7 2 9</td>
<td>8 10 5 6 3 1 4 7 2 9</td>
</tr>
<tr>
<td></td>
<td>noCC</td>
<td>N3</td>
<td>1 9 3 6 2 4 10 8 7 5</td>
<td>1 9 3 6 2 4 10 8 7 5</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>N3</td>
<td>1 9 3 6 2 4 10 8 7 5</td>
<td>1 9 3 6 2 4 10 8 7 5</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>N1</td>
<td>10 5 1 9 3 4 2 7 6 8</td>
<td>10 5 1 9 3 4 2 7 6 8</td>
</tr>
<tr>
<td></td>
<td>noCC</td>
<td>N1</td>
<td>10 5 1 9 3 4 2 7 6 8</td>
<td>10 5 1 9 3 4 2 7 6 8</td>
</tr>
<tr>
<td>3</td>
<td>CC</td>
<td>N3</td>
<td>5 6 3 8 1 2 10 7 4 9</td>
<td>5 6 3 8 1 2 10 7 4 9</td>
</tr>
<tr>
<td></td>
<td>noCC</td>
<td>N3</td>
<td>5 6 3 8 1 2 10 7 4 9</td>
<td>5 6 3 8 1 2 10 7 4 9</td>
</tr>
<tr>
<td></td>
<td>noCC</td>
<td>N1</td>
<td>9 4 10 7 6 2 5 1 3 8</td>
<td>9 4 10 7 6 2 5 1 3 8</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>N1</td>
<td>9 4 10 7 6 2 5 1 3 8</td>
<td>9 4 10 7 6 2 5 1 3 8</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>N2</td>
<td>4 3 10 7 6 5 8 2 1 9</td>
<td>4 3 10 7 6 5 8 2 1 9</td>
</tr>
<tr>
<td></td>
<td>noCC</td>
<td>N2</td>
<td>4 3 10 7 6 5 8 2 1 9</td>
<td>4 3 10 7 6 5 8 2 1 9</td>
</tr>
</tbody>
</table>

- **Nitrogen rates**
 - 0 lbs N (N1)
 - 100 lbs N (N2)
 - 200 lbs N (N3)
- **10 corn cultivars**
- **Weeded pressure**
 - No weed (W-)
 - Surrogate weed (W+)
OREI – Replicated Experiment Trial 2018

Grain Yield [bu/acre]

Corn Hybrids

FARM
- Erisman
- Gruver

N1 N1
W+ W-

N2 N2
W+ W-

N3 N3
W+ W-
OREI - Replicated Experiment Trial 2018

Grain Yield [bu/acre]

Corn Hybrids

Erisman

17.461A
461.2B24
PHHB9*PHM49
PHHB9*PHR63
PHHB9*PHW30
PHHB9*PHZ51
PHHB9*Q381
PHP38*Q381
PHW52*LH185
PHW52*Q381
\[y_i = \angle AOB \]
\[y_2 = \angle BOC \]
\[y_3 = \angle COD \]
\[y_4 = \angle AOD \]
\[\bar{y} = \frac{1}{4} \sum_{i=1}^{4} y_i \]

Heritability = 0.66
ANOVA

<table>
<thead>
<tr>
<th>Effect</th>
<th>DF</th>
<th>Trait</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENV</td>
<td>1</td>
<td>***</td>
</tr>
<tr>
<td>Reps(ENV)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lines per se</td>
<td>11</td>
<td>***</td>
</tr>
<tr>
<td>GCA</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>SCA</td>
<td>54</td>
<td>***</td>
</tr>
<tr>
<td>Checks (C)</td>
<td>7</td>
<td>**</td>
</tr>
<tr>
<td>Line×ENV</td>
<td>11</td>
<td>**</td>
</tr>
<tr>
<td>Heterosis×ENV</td>
<td>1</td>
<td>***</td>
</tr>
<tr>
<td>F1 vs. C×ENV</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C×ENV</td>
<td>4</td>
<td>*</td>
</tr>
</tbody>
</table>
OREI - Replicated Experiment Trial 2018

Root Angle [degrees]

<table>
<thead>
<tr>
<th>Nitrogen Levels</th>
<th>17.461A</th>
<th>PHHB9*PHM49</th>
<th>PHW52*LH185</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>W+</td>
<td>W+</td>
<td>W+</td>
</tr>
<tr>
<td>N2</td>
<td>W-</td>
<td>W-</td>
<td>W-</td>
</tr>
<tr>
<td>N3</td>
<td>W+</td>
<td>W-</td>
<td>W-</td>
</tr>
</tbody>
</table>

FAR
Erisma
Gruber
OREI - Replicated Experiment Trial 2018

Plant Height
Ear Height
Yield
Lodging angle
Root angle
Stem area
Root Complexity

PC1 (38.32%)
PC2 (29.88%)

HYB
17.461A
461.2B24
PHHE9*PHM49
PHHE9*PHR63
PHHE9*PHW30
PHHE9*PHZ51
PHPE9*Q381
PHP38*Q381
PHW52*LH185
PHW52*Q381
Soil Health & Plant Performance

• Food grade traits like grain density is more apparent in the U of I hybrid

• Density and starch are inversely related with protein content and root complexity

• Exploring the plant soil biotic interactions and their influence on fitness and grain quality of different corn varieties
Summary of Replicated Trials

• We observed significant difference between corn varieties for their response to varying nitrogen levels.

• All hybrids showed dynamic responses to improved levels of fertility. These responses were associated with characteristic changes in root architecture.
 • Across environments the top performing “organic hybrid” showed more complex and “steeper” root systems than all “conventional hybrids.”

• Organic hybrids showed high protein contents. Conventional hybrids were high in starch.

• Hybrids did not show significant performance differences between weed treatments.
Testing Network Moving Forward

• Receive continuous feedback from educational network—we welcome input from all players in the food system

• Evaluate and plan 2019 trials with current and new collaborators to expand the testing network—if interested talk to one of us

• Evaluate business models that address intellectual property and germplasm sharing issues
CASH
Instagram: cornandsoilhealth
Website: eOrganic.info/CASH

Carmen Ugarte: cugarte@illinois.edu
Martin Bohn: mbohn@illinois.edu