









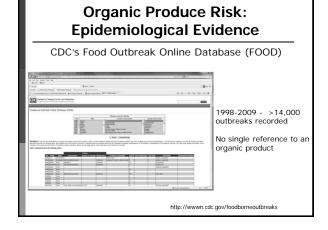



#### Safety Issues of Organic Foods: Microbial Pathogens

#### Fresh fruits and vegetables

- Use of animal manure
- Minimally processed ready-to-eat

#### Meats


Antibiotic-free systems



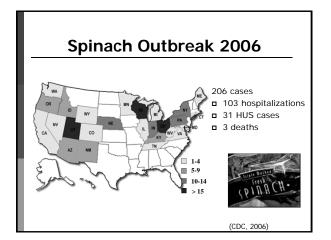
# What is the risk of organic foods as vehicles of foodborne pathogens?

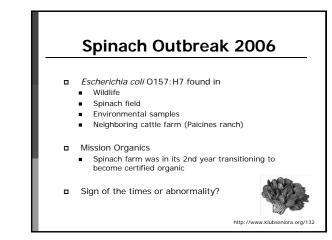
#### Pathogenic Microbes and Organic Foods

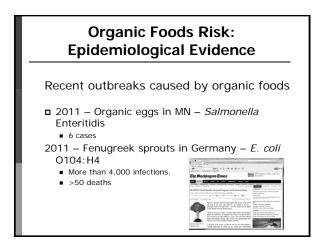
- Epidemiological evidence
- Presence of pathogens and indicators on foods
- Assessment of current practices
  - Use of manure
  - Limited number of approved sanitizers

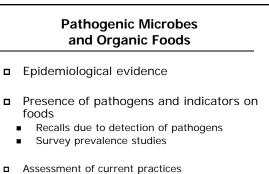


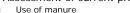
| Organic Produce Risk:<br><i>E. coli</i> 0157:H7 outbreaks or sporadic cases<br>linked to manure |               |         |             |                        |  |  |  |
|-------------------------------------------------------------------------------------------------|---------------|---------|-------------|------------------------|--|--|--|
| Manure type                                                                                     | Year/Place    | # Cases | Vehicle     | Reference              |  |  |  |
| Cow manure                                                                                      | 1985/ U.K.    | 49      | Potatoes    | Morgan et al., 1988    |  |  |  |
| Cattle manure                                                                                   | 1991/Mass.    | 23      | Apple cider | Besser et al., 1993    |  |  |  |
| Cow/calf manure                                                                                 | 1992/Maine    |         | Vegetables  | Cieslak et al., 1993   |  |  |  |
| Cattle carcass & manure                                                                         | 1993/Africa   | >1,000  | Water       | Isaacson et al., 1993  |  |  |  |
| Caw manure                                                                                      | 1997/U. K.    | 8       | Mud         | Crampin et al., 1999   |  |  |  |
| Sheep manure                                                                                    | 1999/Scotland | 6       | Water       | Licence et al., 2001   |  |  |  |
| Cattle manure                                                                                   | 2000/Ontario  | 1,346   | Water       | Health Canada, 2000    |  |  |  |
| Cattle manure                                                                                   | 2003/Germany  | 2       | Soil        | Grif et al., 2005      |  |  |  |
| Cattle manure                                                                                   | 2002/Minn.    | 1       | Soil        | Mukherjee et al., 2006 |  |  |  |
| Cattle manure                                                                                   | 2005/Sweden   | 135     | Lettuce     | Soderstrom et al., 200 |  |  |  |
|                                                                                                 |               |         | (           | Guan and Holley, 200   |  |  |  |


# Organic Produce Risk: Epidemiological Evidence

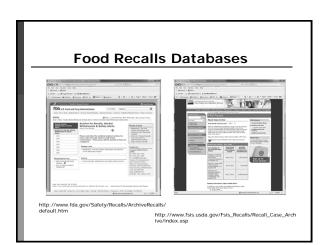

Outbreaks caused by "organic" produce

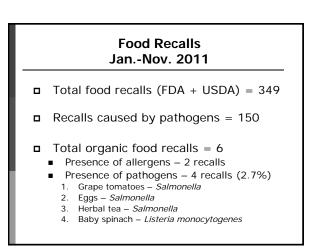

1995 – 42 cases of *E. coli* O157 in Montana due to lettuce (Ackers et al, 1998)


1996 – 44 cases in CT & IL due to mesclun lettuce (Hilborn et al, 1999)


1995 – *Citrobacter* outbreak in Germany linked to parsley (Tschape et al, 1995)










Limited number of approved sanitizers





|                          |                  | •                                                               |                          |        | luce I                    |
|--------------------------|------------------|-----------------------------------------------------------------|--------------------------|--------|---------------------------|
| Vegetables<br>tested     | Total<br>samples | Bacteria<br>tested                                              | %<br>Positive<br>samples | Place  | Ref.                      |
| Imported                 | 1,003            | Shigella<br>Salmonella<br>E. coli 0157                          | 9<br>35<br>0             | USA    | FDA, 1999                 |
| Domestic                 | 1,028            | Shigella<br>Salmonella<br>E. coli 0157                          | 5<br>6<br>0              | USA    | FDA, 2000-<br>01          |
| Organic                  | 3,200            | Salmonella<br>E. coli O157                                      | 0<br>0                   | UK     | Sagoo et al.,<br>2001     |
| Bagged salad<br>mixes    | 3,826            | Salmonella<br>L. monocytogenes<br>E. coli 0157<br>Campylobacter | 6<br>1<br>0<br>0         | UK     | Sagoo et al,<br>2003      |
| Organic and conventional | 605              | Salmonella<br>E. coli 0157                                      | 2<br>0                   | USA    | Mukherjee<br>et al, 2004  |
| Organic lettuce          | 179              | Salmonella<br>L. monocytogenes<br>E. coli 0157                  | 0<br>2<br>0              | Norway | Loncarevic<br>et al, 2005 |

|                             |                  |                                                            | i.                           |         |                              |
|-----------------------------|------------------|------------------------------------------------------------|------------------------------|---------|------------------------------|
| Vegetables tested           | Total<br>samples | Bacteria<br>tested                                         | %<br>Positive<br>sample<br>s | Place   | Ref.                         |
| Organic and conventional    | 2,029            | Salmonella<br>E. coli 0157                                 | 0<br>0                       | USA     | Mukherjee<br>et al,<br>2006b |
| Leafy greens,<br>cantaloupe | 398              | Salmonella<br>L. monocytogenes<br>E. coli 0157             | 3<br>0<br>0                  | USA     | Johnston e<br>al, 2005       |
| Sprouts                     | 200              | Salmonella<br>L. monocytogenes<br>E. coli 0157             | 14<br>0<br>3                 | USA     | Samadpour<br>et al, 2006     |
| Mexican and<br>domestic     | 466              | Shigella<br>Salmonella<br>L. monocytogenes<br>E. coli 0157 | 0<br>0<br>3<br>0             | So. USA | Johnston e<br>al, 2006       |
| Local produce               | 673              | E. coli 0157<br>Campylobacter<br>Salmonella                | 0<br>0                       | Canada  | Bohaychuck<br>et al, 2009    |

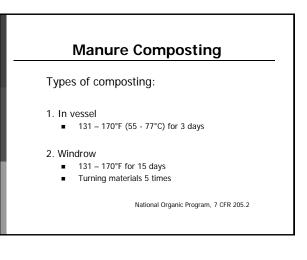
Pathogen Prevalence in Poultry Organic vs. Conventional Bacteria tested Outcome Place Ref. ource O- 100%, C- 37% Significant difference Broiler farms Heuer et al. 2001 Denmark Campylobacte Salmonella Retail 0 - 76%, C - 74% 0 - 61%, C - 44% Cui et al. 2005 MD chicken Broiler 0 – 89%, C – 66% Significant difference Luangto-hgkum et al, 2006 ОН Campylobactei farms O – 87%, C – 83% No fecal prevalence difference Turkey farms Luangto-hgkum et al, 2006 Campylobacter ОН Broiler farms Van Overbeke et al, 2006 Campylobacter Salmonella No significant difference Holland (Fox et al, 2008)

#### Pathogenic Microbes and Organic Foods

- Epidemiological evidence
- Presence of pathogens and indicators on foods
- Assessment of current practices
  - Use of manure
  - Limited number of approved sanitizers

#### Impact of Organic Practices on Pathogen Survival

- □ If compost manure is used: 131 170°F for minimum 3 days (in-vessel) and 15 days (windrow)
- If not composted, manure must be used:
  - 1. At least 90 days before harvesting if the produce do not come in contact with soil
  - 1. At least 120 days before harvesting if the produce do not come in contact with soil (NOP/USDA, 7 CFR 205)


## Origin of the Organic Manure Handling Regulations

- **D** NOP's framework in 1999:
  - Largely based on E. coli O157:H7
  - Recognized the lack of scientific data available
  - Consulted with M. Doyle (UGA), C. Hovde (U. Idaho) and A. Maule (CAMR, UK)
  - Based on the FDA's "Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables" report (Eric Sideman, personal communication)

#### Scientific Background for Organic Manure Handling Regulations

References:

- Bolton, D.J., C.M. Byrne, J.J. Sheridan, D.A. Mcdowell, and I.S. Blair 1999. The survival characteristics of a non-toxigenic strain of *Escherichia coli* O157:147. J. Appl. Microbiol. 86:407-411
- Kudva, I.T., K. Blanch and C. Hovde 1998. Analysis of *Escherichia coli* 0157:H7 survival in ovine or bovine manure and manure slurry. Appl. Environ. Microbiol. 64:3166-3174
- Maule, A. 1995. Survival of the verotoxin strain of *E. coli* 0157:H7 in Laboratory-Scale Microcosms. In Coliforms and *E. coli*: Problem or Solution? Ed. Kayand, D. and Fricker, C. pp61-65. Gateshead, UK: Athenaeum Press Ltd
- Athenaeum Press Ltd
  Wang, G., W. Zhao, and M. P. Doyle 1996. Fate of enterohemorrhagic Escherichia coli (0157:147 in bovine feces. Appl. Environ. Microbiol. 62:2567-2570

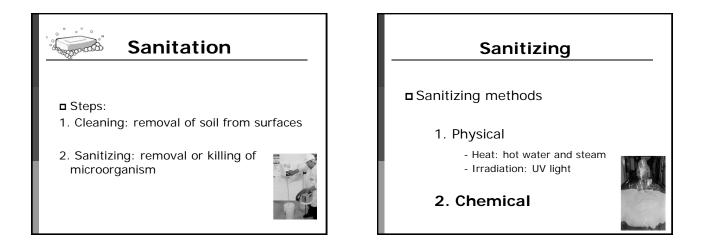


### Limitations of Composting in Windrows

- Uneven temperature distribution
- Cross-contamination
- Diversity of composting systems



- If compost manure is used: 131 170°F for minimum 3 days (in-vesse and 15 days (windrow)
- If not composted, manure must be used:
  - 1. At least 90 days before harvesting if the produce do not come in contact with soil
  - At least 120 days before harvesting if the produce do not come in contact with soil (NOP/USDA, 7 CFR 205)


| Manure and                                          | Bacteria                                      | Maximum                       | Other findings                                        | Reference                    |
|-----------------------------------------------------|-----------------------------------------------|-------------------------------|-------------------------------------------------------|------------------------------|
| conditions                                          | Dacteria                                      | survival<br>(days)            | Other findings                                        | Reference                    |
| Cattle slurries at RT                               | Campylobacter<br>Salmonella<br>E. coli 0157   | 90                            | Inactivated after 30<br>days at 55°C                  | Nicholson et al 2005         |
| Chicken manure @<br>4°, 22° and 37°C                | E. coli 0157<br>S. Typhimurium                | 261                           | Maximum DRT = 150<br>days                             | Himathongkham<br>et al 2000  |
| Cattle manure and<br>slurries @ 4°, 22°<br>and 37°C | <i>E. coli</i> O157<br><i>S.</i> Typhimurium  | 100 @ 4°C                     | 6-log reduction after<br>38 and 48 days               | Himathongkham<br>et al 1999a |
| Chicken manure at 20°C                              | S. Typhimurium                                | 100 @ a <sub>w</sub><br>=0.07 | 6-log reduction @ a <sub>w</sub><br>= 1 after 22 days | Himathongkham<br>et al 1999b |
| Cattle manure                                       | S. Dublin<br>S. Senftenberg<br>S. Typhimurium | 183<br>204<br>204             | Inactivated in<br>composted manure<br>after 14 days   | Forshell and<br>Ekesbo 1993  |

#### Pathogen Survival in Soil I Maximum Reference Soil, manure Organism Other findings type and conditions survival (days) E. coli 0157 Composted dairy and poultry manure 154 (lettuce) 4-log reduction after 42 days Islam et al 2004a 214 (parsley) E. coli 0157 Islam et al 2004b Sandy loam soil, dairy cattle manure 3-log red. w/onion @ 64 days > 84 (carrot) 2.3-log red. w/carrots E. coli 0157 Salmonella Campylobacter Listeria monocytogenes Sandy loam soil, cattle & poultry manure 2-log reduction after 62 days Hutchinson et al 2004 >32, <62 >62 >62 >18, <32 >62 Fallow soil & silt loam soil, cattle manure E. coli 0157 41 (fallow) Clay increased persistance Gagliardi and Karns 2002 92 (silt loam) 500 (frozen)

| Soil, manure                            | Organism                  | Maximum                            | Other findings                          | Reference                  |
|-----------------------------------------|---------------------------|------------------------------------|-----------------------------------------|----------------------------|
| type and<br>conditions                  |                           | survival<br>(days)                 |                                         |                            |
| Sandy, clay and<br>loam soils           | E. coli 0157              | 56 (sandy)<br>175 (clay &<br>loam) | 3-log reduction<br>after 136 days       | Fenton et al<br>2000       |
| Cattle manure @<br>25°C                 | E. coli 0157              | 56                                 |                                         | Mubiru et al<br>2000       |
| Manure-<br>ammended soil                | S. Typhimurium            | 63 (5°C)<br>42 (22°C)              |                                         | Zibilske and<br>Weber 1978 |
| Silty clay loam &<br>channery silt loam | Cryptosporidium<br>parvum | 120 (90%)<br>164 (99%)             | High variability in<br>survival         | Kato et al 2004            |
| Dry and wet soils                       | Cryptosporidium<br>parvum | 50 (-10 °C)                        | Freeze-thaw cycles<br>had little effect | Kato et al 2002            |

# Pathogenic Microbes and Organic Foods

- Epidemiological evidence
- Prevalence of pathogens and indicators on foods
- Assessment of current practices
  - Use of manure
  - Limited number of approved sanitizers

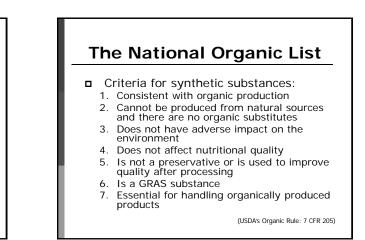


# Sanitizing

## Chemical sanitizers

→ No-rinse food contact surface sanitizer
 → Reduces *E. coli* and *S. aureus* by 5 logs in 30 sec at 25°C

## FDA Approved Non-Rinse Food Contact Surface Sanitizers


- Chlorine
- Chlorine dioxide
- Iodophors
- Quaternary ammonium compounds
- Acid-anionic sanitizers
- Carboxylic acid sanitizers
- Hydrogen peroxide
- Peroxy acid compounds
- Phenolic compounds

# National List of Allowed and Prohibited Substances

- Includes non-synthetic and synthetic substances
- Three major categories:
  - 1. Livestock
  - 2. Crop production
  - 3. Processing

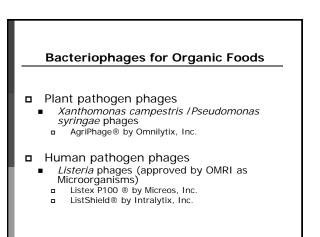
USDA Organic

(USDA's Organic Rule: 7 CFR 205)



#### Sanitizers in the National **Organic List** Livestock Crops Process ategory Alcohols (ethanol, isopropanol) Chlorine compounds (4 mg/L residual CI) Sodium/calcium hypochlorite Chlorine dioxide Hydrogen peroxide Peracetic/peroxyacetic acid Iodophore Citrus product D-limonene (USDA's Organic Rule: 7 CFR 205)

#### Alternative Sanitizers/Antimicrobial Ingredients


- Natural salts
- Natural plant extracts
- Microorganisms
  - BacteriaBacteriophages

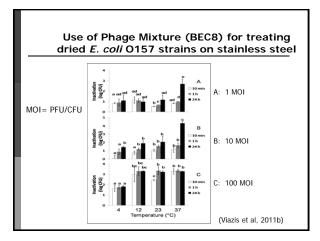
- Bacteriophages as Potential Antimicrobials for Organic Food Production
- Specific to host
- Obligate parasites
- D Widely available in nature
- **D** Cost-effective

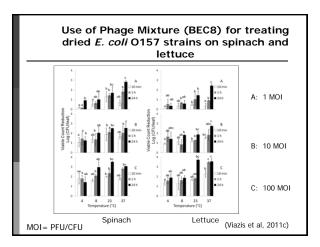
B 200 nm

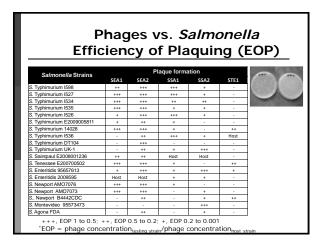
Source: Dr. Andrew Brabban

Other phages are approved for organic production
 Recent approval by FDA



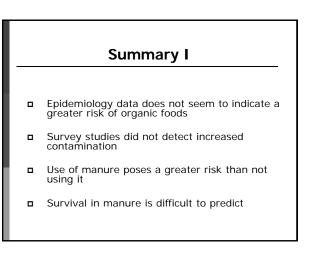

#### Bacteriophages as Potential Antimicrobials for Organic Food Production


#### Project goal:


- **D** Isolate, screen and evaluate bacteriophages against:
  - *Escherichia coli* O157:H7 and other shiga-toxin producing *E. coli*
  - Salmonella
  - Listeria monocytogenes

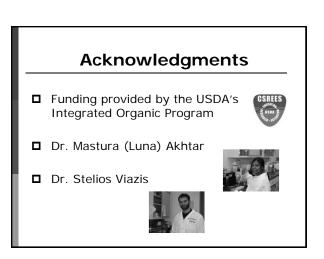
#### Phages vs. E. coli **Range of Sensitive Strains** Bacterial % Strains affected by individual phages cies/serovars spe (number) CEV2 ECB7 ECA1 0157:H7 (N=130) 96.2 93.1 97.7 93.1 99.2 96.0 93.1 93.1 026 (N=10) 70.0 70.0 90.0 70.0 80.0 80.0 90.0 100.0 0111 (N=10) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Commensal E. coli (N=19) 26.1 31.6 15.8 15.8 31.6 21.1 21.1 5.3 0.0 75.0 25.0 50.0 50.0 25.0 E. coli 055 (N=4) 25.0 0.0 11.1 7.4 18.5 48.2 Salmonella (N=27) 22.2 7.4 0.0 7.4

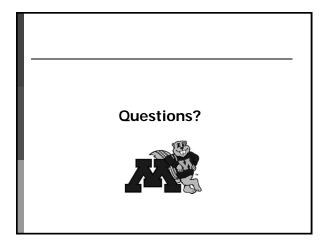
(Viazis et al. 2011a)









|            | •                               | s vs. Sa                       |                            |                 |
|------------|---------------------------------|--------------------------------|----------------------------|-----------------|
|            | Range o                         | of Lyzed                       | Serova                     | ars             |
| Phage      | Host serovar                    | Cros                           | ss infected Ser            | ovar            |
| SSA1, SSA2 | S. Saintpaul                    | Typhimu                        | urium, Enteritidis,        | Newport         |
| STD2       | S. Typhimurium                  |                                | Enteritidis                |                 |
| STE1       | S. Typhimurium                  |                                | Newport                    |                 |
| SEA1, SEA2 | S. Enteritidis                  | nnessee                        |                            |                 |
|            | -                               | i.                             |                            |                 |
| Phage      | S. Typhimurium<br>(N = 14)<br>% | S. Enteritidis<br>(N = 3)<br>% | S. Newport<br>(N = 6)<br>% | 0.              |
| SEA1       | 64.3                            | 100                            | 66                         | Lange: 100.40 r |
| SEA2       | 64.3                            | 66.7                           | 66                         | The second      |
| SSA1       | 78.6                            | 100                            | 0                          | SEA1            |
| SSA2       | 78.6                            | 100                            | 0                          |                 |


| Phages vs. <i>Listeria monocytogenes</i><br>strains |            |                |            |               |              |            |            |             |           | s    |
|-----------------------------------------------------|------------|----------------|------------|---------------|--------------|------------|------------|-------------|-----------|------|
|                                                     |            |                |            |               | nage Iso     |            |            |             |           |      |
| Listeria<br>monocytogenes                           |            |                | (E         | EOP) Ef       | ficiency     | of pla     | quing      |             |           |      |
| Strains                                             |            |                |            |               |              |            |            |             |           |      |
|                                                     | LMB3       | LMD3           | LMD4       | LMA4          | LMA5         | LMA6       | LMA7       | LMA8        | LMA9      | LME3 |
| J1-031                                              | +          | + + +          | + + +      | -             | -            | -          | +          | + + +       | + + +     | -    |
| C1-056                                              | + + +      | + + +          | -          | + + +         | + + +        | + + +      | + +        | + + +       | + + +     | Host |
| J2-031                                              | + + +      | + + +          | + + +      | + + +         | + + +        | + + +      | + + +      | + + +       | + + +     | ++   |
| Scott A                                             | + + +      | +++            | + + +      | Host          | Host         | Host       | Host       | Host        | Host      | +    |
| J1-094                                              | +++        | +++            | -          | + + +         | + + +        | + + +      | +++        | +++         | +++       | + +  |
| J2-064                                              | +++        | Host           | Host       | + + +         | + + +        | + + +      | ++         | +++         | + +       | +    |
| J1-168                                              | +          | +++            | +++        | -             | -            | -          | +++        | + +         | ++        |      |
| C1-115                                              | + + +      | -              | -          | + + +         | + +          | + +        |            | + + +       | + +       | +    |
| R-2500                                              | +++        | -              | -          | +++           | +++          | +++        | -          | +++         | ++        | ++   |
| 51775                                               | +++        | +++            | +++        | +++           | +++          | +++        | +++        | +++         | +++       | ++   |
| N3-031                                              | Host       | -              | -          | -             | -            |            | -          | -           | -         | -    |
| +++, EOP 1 to 0.:                                   | 5; ++, EOP | 0.5 to 0.2; +, | EOP 0.2 to | o 0.001; -, b | acterial str | ain was no | ot suscept | ible to pha | ge attack |      |



### Summary II

- □ Current organic manure practices should be reviewed
- There is great need to develop effective nonsynthetic sanitizers/antimicrobial substances for organic food production
- Phages have great potential for control of specific pathogens



