Compost Carryover Effects on Soil Quality, Productivity and Cultivar Selection in Organic Dryland Wheat

> Jennifer Reeve and Earl Creech Utah State University

http://www.extension.org/organic_production

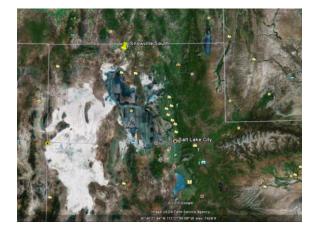
Jennifer Reeve

arl Creech

UtahState

Long-Term Compost Carryover and Cover Crop Effects on Soil Quality, Profitability and Cultivar Selection in Dryland Organic Wheat

Jennifer Reeve, and Earl Creech


UNIVERSITY

Multi-State Project

Awarded by the USDA OREI program

- Utah State University: Earl Creech, Jennifer Reeve, David Hole, Astrid Jacobson, Kynda Curtis
- Washington State University
- University of Wyoming

Original Study

Methods

- Completely Randomized Block Design
- Three replicates
- Two treatments: compost and control
- Plot size 8 m x 15 m.
- Dairy manure + straw bedding compost applied at 22 tons per acre dry weight in 1995.

Compost Characteristics

Parameter	Analytical Result	Amount Supplied
pН	8.5	-
EC	29 dS/m	-
Moisture	55%	-
Total N	1.9%	960 kg ha-1
Nitrate-N	2,415 mg kg-1	120 kg ha-1
C:N Ratio	20:1	-
Total P	0.57%	288 kg ha ⁻¹
Total K	2.90%	1,462 kg ha ⁻¹
Total S	0.36%	180 kg ha-1

Yield kg ha-1	Compost 1995	Control 1995	Compost 1997	Control 1997
Winter wheat	3,746†	1,480	3,410†	1,096
Yield kg ha ⁻¹	Compost 2008	Control 2008	Compost 2010	Control 2010
Yield kg ha ⁻¹ Winter wheat	Compost 2008 446†	Control 2008 213	Compost 2010 1,560§	Control 2010 840

Treatment means designated *, †, ‡ and § are significant at p < 0.05, p < 0.01, p < 0.001 and p < 0.0001 respectively.

Soil Test Re	sults
--------------	-------

Soil Property 0-5cm depth (g ⁻¹ soil)	Compost 2008	Control 2008	Compost 2010	Control 2010
Olsen P µg	39.3‡	18.4	35.3 †	18.2
Olsen K µg	836 ‡	855	789 †	685
Dehydrogenase µg TPF	8.51	7.26	62.4 §	44.1
Acid Phosphatase µg p- nitrophenol	132 §	105	43.1*	30.7
Alkaline Phosphataseµg p- nitrophenol	140	122	657 †	496
Readily Mineralizable C µg	6.97	4.84	3.51	3.58
Microbial Respiration µg	0.703	0.787	0.758	0.690
Microbial Biomass µg	104	96	218	184

Treatment means designated *, †, ‡ and § are significant at p < 0.05, p < 0.01, p < 0.001 and p < 0.0001 respectively.

Soil Test Results

Soil Property 0-5cm (g ⁻¹ soil)	Compost 2008	Control 2008
Organic Carbon µ	15,233†	6,830
Organic N µ	1,386	1,276
Nitrate µ	1.44	1.87
Ammonium µ	0.115	0.132
Manganese DPTA µ	11.0	11.0
Zinc DPTA µ	1.10*	0.74
Iron DPTA μ	4.00	3.95
Copper DPTA µ	1.79	1.62
Total Sulfur µ	277	258

Treatment means designated *, †, ‡ and § are significant at p < 0.05, p < 0.01, p < 0.001 and p < 0.0001 respectively.

Soil Test Results

Soil Property 5-10 cm depth (g ⁻¹ soil)	Compost 2008	Control 2008	Compost 2010	Control 2010
Olsen P µg	32.3‡	13.5	35.7‡	14.4
Olsen K µg	798 §	602	785‡	650
Dehydrogenase µg TPF	6.10	4.90	41.0†	31.5
Acid Phosphatase µg p- nitrophenol	111	40.0	101	30.4
Alkaline Phosphataseµg p- nitrophenol	131	119	534	434
Readily Mineralizable C µg	4.32	4.02	2.55	2.50
Microbial Respiration µg	0.622	0.598	0.678	0.596
Microbial Biomass µg	74	61	137	126

Treatment means designated *, †, ‡ and § are significant at p < 0.05, p < 0.01, p < 0.001 and p < 0.0001 respectively.

Soil	Test	Results
------	------	---------

Soil Property 5-10cm (g ⁻¹ soil)	Compost 2008	Control 2008
Organic Carbon µ	12,863	6,570
Organic N µ	1,742	1,228
Nitrate µ	1.03	0.928
Ammonium µ	0.198	0.079
Manganese DPTA µ	10.5	9.93
Zinc DPTA µ	1.23	0.82
Iron DPTA µ	3.90	3.68
Copper DPTA µ	1.79	1.63
Total Sulfur µ	266	244

Treatment means designated *, †, ‡ and § are significant at p < 0.05, p < 0.01, p < 0.001 and p < 0.0001 respectively.

Soil Property 10-30cm depth (g ⁻¹ soil)	Compost 2008	Control 2008	Compost 2010	Control 2010
Olsen P µg	5.07	3.87	5.63	3.43
Olsen K µg	608	512	640	575
Dehydrogenase µg TPF	1.76	1.26	13.0	9.40
Acid Phosphatase µg p- nitrophenol	-	-	-	-
Alkaline Phosphataseµg p- nitrophenol	-	-	-	-
Readily Mineralizable C µg	1.97	1.94	1.13	1.21
Microbial Respiration µg	0.391	0.400	0.447	0.461
Microbial Biomass µg	34	34	71	65

Treatment means designated *, †, ‡ and § are significant at p < 0.05, p < 0.01, p < 0.001 and p < 0.0001 respectively.

Soil Test Results

Soil Property 10-20cm (g ⁻¹ soil)	Compost 2008	Control 2008
Organic Carbon µ	5,870	5,657
Organic N µ	1,301	1,265
Nitrate µ	2.50	2.44
Ammonium µ	0.278	0.263
Manganese DPTA µ	4.51	4.21
Zinc DPTA µ	0.427	0.407
Iron DPTA μ	5.47	5.14
Copper DPTA µ	1.15	1.08
Total Sulfur µ	267	257

Treatment means designated *, †, ‡ and § are significant at p < 0.05, p < 0.01, p < 0.001 and p < 0.0001 respectively.

Cumulative yield gain since 1995

Year	Crop	Y ₀	Y ₅₀ measured	Y ₅₀ estimate	Y ₅₀ -Y ₀ estimate
1995	wheat	22	56	64	42
1997	wheat	16	51	43	27
1998	safflower	-	-	-	-
2000	wheat	21*	-	52	31
2002	wheat	8*	-	19	11
2004	wheat	4*	-	9	5
2006	wheat	20*	-	42	22
2008	wheat	3	7	6	3
2010	wheat	13	23	25	12
2010 wheat 13 23 25 12 * R. Grover's average for that field in bushels / acre.					

Note: missing years are fallow years i.e., no crop grown.

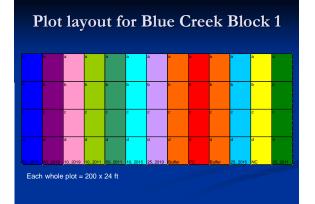
Estimated Cumulative Yield Gain

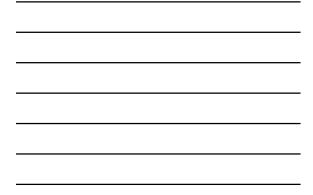
- $(Y_{50}-Y_0)$ since 1995 = 152 bu/ac = 4.56 tons/ac
- Cost of Miller's compost = \$154 (ton DM compost)⁻¹ so 22 tones per acre = \$3,394
- Average price of organic wheat in 2009 = \$330 ton⁻¹ and \$330 x 4.56 = \$1,505.
- Cost of Morgan's Dairy compost = \$46 ton DM compost)⁻¹ so 22 tones per acre = \$1,012.
- For T = infinity (assuming the average of Y_0 of 13 bu/ac), the expected cumulative yield gain for wheat-fallow is 325 bu/ac = 9.77 tons per acre.
- Total estimated yield gain worth \$3,224?

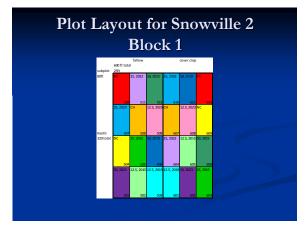
Conclusions

- Compost carryover is evident on soil quality, soil fertility and yield of winter wheat 16 years after application.
- At current wheat prices this carryover is insufficient to justify application of purchased compost at the rate of 22 tons per acre.
- Further research is needed to measure long term carryover of lower application rates on yield.
- Application of cheaper compost at current hauling rates would be economical.

New Multi-State Project


- Awarded by the USDA OREI program
 - Utah State University: Earl Creech, Jennifer Reeve, David Hole, Astrid Jacobson, Kynda Curtis
 - Washington State University: Ian Burk, Randy Fortenbery
 - University of Wyoming: Jay Norton, Urzula Norton, Axel Garcia (now at University of Minnesota)
 - Oregon State University: Alexandra Stone and e-organic


Objectives


- A) Characterize the effect of cover crops and compost carryover on soil quality, soil moisture, weed suppression, wheat yield and quality, and long-term economic return in dryland wheatfallow production systems
- B) Select wheat varieties for optimum yield, quality and economic feasibility in organic dryland systems
- C) Increase adoption and sustainability of organic wheat production

Blue Creek Experiment Station

- New long-term experiments
 - RCBD four replicates and split split plot
 - Whole plot = Fertility input (compost at 0, 5, 10, 20 tons / acre + positive control)
 - Split plot = cover crop
 - New applications of compost to new ground compared to previous applications using regression analysis.

Next steps

- Keep monitoring Richard Grover's plots
- New trials at the Blue Creek Experiment Station and Richard Grover's farm: compost rates = 22, 11 and 5 tons per acre
- Cover crops
- Expanded crop rotations
- Better adapted varieties
- 555

Acknowledgments

- Previous work was funded by Western SARE, the NRCS CIG program and the Utah Agricultural Experiment Station and Utah State University startup funds.
- New study funded by USDA OREI
- Special thanks to Richard Grover, David and Michael Deakin and David Smith for allowing this study to take place on their land, to Davey Olsen, Kareem Adeleke and Gaia Nafziger for assistance with soil sampling and wheat harvest and to Alicia Campbell, Karen Maughan, Mae Culumber and Michael Amacher of the Utah Forestry Service for assistance with lab analyses.

- Find all upcoming and archived webinars at <u>http://www.extension.org/pages/25242</u>
- A recording will be available in our archive and on the eOrganic YouTube channel.
- Have an organic farming question? Use the eXtension Ask an Expert service at <u>https://ask.extension.org/groups/1668/ask</u>
- We need your feedback! Please respond to an email survey about this webinar which you'll receive later.
- Thank you for coming!

