

Breeding in a nutshell

- Establish breeding goals
- Conduct trials and select best materials
- Make crosses, allow crossing
- Select the best plants
- Allow crossing of best plants
- Select, cross, repeat

Terminology

Open Pollinated (OP)

A variety that is produced by allowing plants to openly pollinate with others in the population. Seed saved from an OP will grow out true to type.

Hybrid (F1)

A variety that is the product of a controlled cross between two genetically distinct parents. Seed saved from a hybrid carrot variety will usually be male-sterile.

Phenotype = Genotype + Environment

Phenotype: the appearance of the plant – what you see

Genotype: the genetic makeup of the plant – what you don't necessarily see

Both the environment and the production system have significant impacts on the phenotype

Not everything you see will be passed onto the progeny

Terminology

Gene: unit of inheritance that controls a given trait. At a fixed location, or locus, on a chromosome.

Allele: one of a number of possible gene variants at a given locus

F1, F2, F3: abbreviation for Filial, indicating the generation after a cross

Terminology

Heterozygous: having non-identical alleles at a locus

Homozygous: having identical alleles at a locus

Dominant Allele: allele that produces a given phenotype regardless of whether it is homozygous or heterozygous

Recessive Allele: allele that produces a given phenotype only when it is homozygous

Trait inheritance – simple to complex

• Simple

- Single, or few, gene(s) involved in trait expression
- Phenotypes fit into distinct categories
- Expression is less environmentally sensitive

• Complex

- Many genes are involved in trait expression
- Range or spectrum of phenotypes
- Expression is more environmentally sensitive

Selection considerations

- Vigorous individuals
- Genetics and field conditions
- Disease and pest pressure
- Ideotype
- Eating quality: flavor and texture

Mass selection

Selecting individuals from a population

Tips:

- Large population
- Uniform conditions
- Select from whole field
- Good for phenotype traits

Disadvantages:

- Based only on phenotype
- Cannot realize maximum genetic potential
- Less uniformity achieved

Family Selection

Selection of related individuals from a population (aka progeny selection)

Tips:

- Save seed in individual bags
- Plant individual rows next season
- •Select between & within families • Faster progress than mass selection
- Better for complex traits

Disadvantages:

- Selection more time consuming More field space needed
- Record keeping Inventory management

Selection Summary				
Mass selection	Family selection			
Slower progress	Faster progress			
Easier	More difficult			
Good for single gene I and simple inheritance traits	Families give you insight into hidden genetics			
No record keeping	Maintain separate families			
	Pitto			

Making Progress with Selection

- Need variation for the trait(s) of interest within the population or cross
- Trait of interest may show high or low heritability
- Related individuals give you information about one another
- Higher potential for expression of recessive traits with family selection

How much to select?

- Selection intensity
- Seed from selected plants will grow into plants with less extreme phenotype
- Must balance against population size
 Existing diversity

Historical Developments in Carrot Improvement

- Domesticated 1100 years ago in area of Afghanistan (quite recent)
 Yellow or purple (purple better-flavored)
 - Some possibility carrot was known in Roman Empire (100BCE)
- Spread west through Middle East, north Africa and Europe; east through India and China
- Selected for color, smooth roots, flavor, non-flowering
- Orange types selected in southern Europe in the 1400's-1500's
 Hybrid era began in 1950's

Records of cultivated carrots

•	Time	Location	Color
•	Pre-900's	Afghanistan and vicinity	Purple and yellow
•	900's	Iran and northern Arabia	· · · ·
•	1000's	Syria and North Africa	
•	1100's	Spain	
•	1200-1300	Italy and China	
•	1300's	France, Germany,	
•	1400's	England	1
•	1500's	Italy, Spain & Germany	First orange carrots
•	1600's	Japan	Purple and yellow
:	1600's	Northern Europe & North America	Orange and white
•	1700's	Japan	Orange
•	1721	Northern Europe	'Long Orange' & 'Horn' types described

Boy Holding a Carrot 1738 by F. Boucher (French)

Carrot carotenoids

The Y and Y2 genes control white vs. yellow and yellow vs. orange color

Y_Y2_ - white Y_y2y2 - pale orange yyY2_ - yellow yyy2y2 - orange

The Y gene						
Pop 5249 Y2Y2	W(Y_)	Y(vy)	Pop 466 y2y2	pOr(Y-)	dor(yy)	
60 50 Lutein 40 - 30 - 20 - 10 -			500 400 200 100	a ca	and β rotene	
0	20	40	0 20	40	60	
Phenotypic class	No. roots	p-value	Phenotypic class	No. roots	P-value	
1) White (3) 2) Yellow (1)	262 78	0.75	1) Pale orange (3) 2) Orange (1)	148	0.65	

- 154 wild and 520 domesticated carrots were used in this study
 Or is within a 143 kb region on
- Chromosome 3 flanked by the most significant SNPs
- Metrics to detect selective sweeps (pi, F_{st}, and XP-CLR) identified a region on chromosome 3


```
Ellison et al, 2018 (Under Review)
```


Red is the most recessive carrot color-Most difficult to develop but easiest to maintain in a breeding program

yyy2y2 – orange

yyy2y2oror - orange

yyy2y2r1r1r2r2 – red

Carotenoid Color
Genetics Y_Y2_- - white Y_Y2_- - white Y_yY2_- - pale orange $yyY2_-$ - yellowyyy2y2 - orange

yyy2y2oror – orange

yyy2y2r1r1r2r2 – red

Carrot Anthocyanins

Cy3XG Cy-3-Xyl-Gal -- absorbed readily Cy3XGG Cy-3-Xyl-Glu-Gal -- absorbed readily Cy3XSGG Cy-3-Xyl-SinapoylGlu-Gal -- absorbed somewhat Cy3XFGG Cy-3-Xyl-FeruloylGlu-Gal -- absorbed somewhat Cy3XCGG Cy-3-Xyl-(4-Coumaroyl)Glu-Gal -- not absorbed

		-

Daucus.carota ssp. carota (wild carrot), D. carota ssp. sativus (cultivated carrot)

A colorful history of carrot consumer value

- Domesticated 1100 years ago in area of Afghanistan (quite recent) Yellow or purple (purple better-flavored)
 - Some possibility carrot was known in Roman Empire (100BCE)
- Spread west through Middle East, north Africa and Europe; east through India and China
- Selected for color, smooth, large roots, flavor, non-flowering
- Orange types selected in southern Europe in the 1400's-1500's •
- Hybrid era began in 1950's

~8 QTL across the genome control the range of orange color (alpha- and beta- carotene) in orange carrots Ranges from 50ppm to 400ppm(Santos & Simon, 2002) Several high carotene inbreds and populations released (Simon et al., 1989 to present)

Flavor is an important trait for consumers of horticultural crops Extensive genetic variation for flavor in diverse carrots Flavor gene expression and mapping underway for

several crops

Improving Carrot Farm Value **Diseases and Pests**

- <u>What U.S. growers want</u>
- · Hybrid cultivars for uniformity . Disease and pest resistance
 - Alternaria leaf blight OTL analysis
 - Root-knot nematodes Some QTL analysis
 - Cavity spot, mildew, carrot fly, etc.
 No published genetic mapping
- Bolting resistance
 Some gene analysis
- Early seedling & plant vigor

Heat/drought/stress tolerance

- No published genetic analysis
 Lower pesticide, fertilizer, energy input
 U.S. organic production 11-14% of total crop Larger top size suppresses weed competition
 Some QTL analysis
- Root-knot nematode resistance 8507

2014-17 Carrot Crop Wild Relative Project valuating diverse germplasm for abiotic stress

- Heat, drought, and saline field trials in Bangladesh by Md. A. Rahim and in Pakistan by A. Ali Heat & Drought Stress
 - Stress tolerance in wild carrot Salinity Stress

- Stress tolerance in cultivated carrot Salinity stress Pakistan

Funded by the Global Crop diversity Trust

- Alloplasmic line, D.c. maritimus

Using Cytoplasmic Male Sterility

- Takes additional generations to produce seed
- Requires more record keeping and see production facilities
- Used for most large-scale production because of greater uniformity

