

Pullman, Washington, USA

12-14 August, 2013

International Quinoa Research Symposium

What is the Global Potential of Quinoa?

Sven-Erik Jacobsen

Content

Intro

Possible solutions

Production systems

New technology

New genetic material

New genetic material

Quinua

Breeding Photoperiod Stresses

> Cultivation Promotion

Conclusión

Name and occation Slide 2

Climate is likely to change for the worse in many developing countries

Possible solutions for climate proof cropping systems

- Improved cropping systems
- New technologies
- New genetic material

New genetic material

Quinoa

Nutritional value

Cultivation

Market

Family

Name and occation Slide 7

Local market

Organic produce First quality Stable, constant production / Processed pr

Organization
Lack of confidence
Confederation

Participatory Market Chain Approach (PMCA) (Bernet et al., 2005)

Name and occation Slide 9

Quinoa: Production, consumption, export, Bolivia

How can we benefit from the situation?

Production

Market

Consumption

IV International Quinoa Conference, Ecuador

Bolivia and Peru

Slide 13

How can we supply quinoa for future **market** demand?

Production of quinoa Real in Bolivia Bolivia and Peru Andes Global production

Breeding

Breeding objectives are:

- Climate proof varieties
- Tolerance to abiotic and biotic stresses
- Quality
- Photoperiod

Adaptation to:

- Climate change
- Stresses
- Photoperiod

Genetic diversity

3000 accessions

Gene banks

Conservation in situ

Diversity in morfological, physiological and biochemical parameters

Ecotypes of quinua:

Altiplano (>3600 masl)

Salar (3600 masl)

Valleys (2500-3600 masl)

Subtropical (<2500 masl)

Sea level (0-500)

Characters of interest

- Morphology
 - Plant short-long
 - Branched-single stem
 - Amaranthiforme-glomerulate
 - Open-closed
 - Plant and seed colour
 - Seed size
- Physiology
 - Tolerance to abiotic stresses
 - Early maturity
- Agronomy
 - Tolerance to biotic stresses
 - Adapted to mechanization
- Biochemistry
 - Saponin
 - Protein
 - Protein composition
 - Nutritional value
 - Processed products

Model plant

Yield

Photoperiod

- (a)
 Titicaca and Achachino, short to long photoperiod (SL), continuous short period (S)
- (b) 49 days after sowing Yellowing of the lower leaves of the SL plants developed after the shift in photoperiod

Soluble sugar and ABA content of the top-most, fully expanded, leaves collected on the day of shifting photoperiod

Anthesis

Vital stage of the plant
Transition from vegetative to reproductive growth

Objective of breeding:

Manipulate the phenology (esp. anthesis) according to geographical region

Adaptation aimed at photoperiod and temperature

Stresses

Salinity

Yield

Inter-specific variation

Percent fresh weight biomass and height reduction in 14 quinoa varieties

Intraspecies differences

Name and occation Slide 23

Mechanisms

Intraspecies differences

Utusaya vs. Titcaca: Stomatal conductance & Photosynthesis

□ Control □ NaCl

Na and K

Transporters and channels

Salt tolerance mechanisms

- Exclusion of Na from leaf
- Mantain low level of Na in cytosol
 - Active pumping of Na to the vacuole, against the electrochemical gradiente
 - Prevent diffusion of Na to cytosol
- Better K retention
 - Osmotic role
 - Avoid protein catabolism
 - Avoid PCD
- Mantain K/Na in cytosol
- High level of H+ pumping to maintain membrane potential
- More SOS1
- Reduced stomatal density

Salt tolerance

Razzaghi et al., 2012

Drought

Available water

FTSW: the fraction of transpirable soil water

FTSW=(WTn-WTf)/TTSW

WTn: pot weight on given date

WTf: pot weight when transpiration rate of the stressed pants decreased to 10% of control plants

TTSW: Total transpirable soil water

Drought tolerance

B: Boliviana

D: Danes

C: Control

S: Sequía

Linear plateau model

Drought tolerance mechanisms

Plasticity
Small, thick-walled cells adapted to maintain turgor under drought
Low osmotic potential
Dense root system
Reduction in leaf area from leaf loss
Vesicles

Cultivation - Denmark

Sowing

Emergence

Weeding

Left: Sowing machine

Right: Hoeing, sowing of green manure crop

Slurry: position with GPS just under seeds

May

Mildew

Late May

Beginning June

July

Name and occation Slide 42

August-September Harvest

Festival Gastronómico Turístico de la Quinua en Puno

Promotion

Festival Gastronómico T de la Quinua en Pu

The Great Quinoa Day

New products

Products Pullman

Products Denmark

Knabstrup

Saison

The role of quinoa

- Adaptation
 - Genetic diversity
- Nutritional value
 - Complete food
- Tolerant to adverse, abiotic stresses
 - Drought, salt, cold
- Global market
 - World interest
- A significant role!

