Wheat varietal selection and annual vs. perennial growth habit impact soil microbes and apple replant disease suppression

> Lori Hoagland Purdue University

Soil-borne pathogens

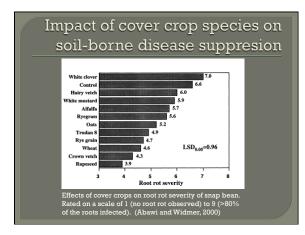
- Major cause of yield loss in agricultural systems
- Apple replant disease
- Caused my a complex of several fungal pathogens and parasites from the genera *Rhizoctonia, Pythium, Phytopthora, Cylindrocarpon and Pratelynchus*
- Negatively impacts the growth of newly planted apple trees
- Pre-plant fumigation is the only effective treatment

Suppression via crop rotation

Rotating with cover crops and mixed hay has reduced soil-borne disease (Gu and Mazzola, 2003; Benitez et al., 2007; Larkin et al., 2011)

- Suppression correlated with changes in soil microbial activity & community composition
- Including genera well-characterized as biological control agents

- Fluorescent Pseudomonas, Streptomyces, Burkholderia, Bacillus and Mycorrhiza



Basis for plant-microbial interactions

Plants support soil microbes via root exudates

- Amount & composition varies by species and genotype (Rengel, 2002)
- Soil microbial community varies with single plant gene mutation (Badri et al., 2009)

Impact of wheat genotype on biological control agents

- Wheat varieties differ in capacity to support biocontrol *Pseudomonas* species (Gu and Mazzola, 2003; Meyer et al., 2012)
- Differences correlated with suppression of apple replant disease in greenhouse studies (Gu and Mazzola, 2003)

Impact of selection conditions on plant-microbial interactions

Soybean genotypes selected in high-input systems unable to discriminate between efficient nitrogen fixing symbionts (Kiers et al., 2007)

 Selection in low-input systems inadvertently selected for sugarcane genotypes that associate and benefit from native soil diazotroph spp. (Baldini et al., 2002)

Perennial wheat

Figure 2. Root systems of annual and perennial wheat grown in hydroponics

Cross between annual wheat and wheat ancestors (*Thinopyrum intermedium*)

Deeper and more extensive root systems than annual wheat

Tolerant of *Rhizoctonia* and *Pythium* (Okubara and Jones; Hoagland et al., unpublished)

Regrows after cutting

Objectives

- Determine whether selection conditions and a perennial versus annual growth habit impact the ability of wheat genotypes to increase genera characterized as biocontrol agents
- Evaluate the ability of annual and perennial wheat genotypes to suppress apple root pathogens and enhance apple seedling health

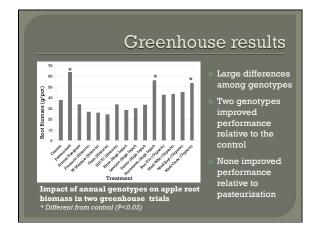
Materials and Methods

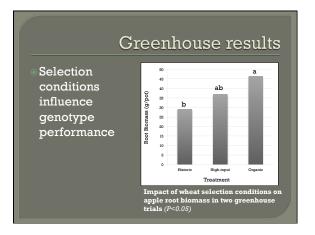
- Greenhouse trials conducted using field soil from apple orchards with documented pathogen infestation
- Field soil subjected to the following treatments: - Control
 - Pasteurized
 - Annual ryegrass
 - One of four annual historic wheat genotypes
 - One of four annual high-input wheat genotypes
 One of four annual organic wheat genotypes

 - Wheat relative (Thinopyrum intermedium)
 - One of four perennial wheat genotypes

Materials and Methods

- Each treatment subjected to three, 28- day wheat growth cycles (5 reps/treatment)
- Following cultivation, planted to three six-week old gala seedlings and harvested after 10 weeks

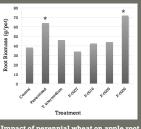



- One genotype from the perennial, high-input and organic groups with greatest improvement in apple seedling health selected for rhizosphere microbial analyses
- Experiment was repeated

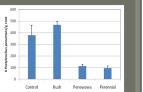
Materials and Methods

- Field studies conducted at two sites (Fuller and Tukey) previously planted to apple with documented pathogen infestation
- Treatments
 - Pasteurized or fumigated with a mixture of *Brassica* juncea and *Sinapis alba* seedmeal
 - High-input annual wheat genotype (cv. Penewawa)
 - T. intermedium (cv. Rush)
 - Mixture of perennial wheat genotypes

(Organic not included due to lack of available seed



- High variability within perennial wheat genotypes
- P-0006 improves performance relative to pasteurized treatment



Impact of perennial wheat on apple root biomass in two greenhouse trials (* Significantly greater than control P<0.05)

provement in apple odification of the so	seedling healtl I microbial com	munity	
Rhizosphere microbial ; per 0.5g apple root)	populations in gree	nhouse trials (CFU	
	Fluorescent		
Treatment	Pseudomonas	Total pathogens [†]	
Control	31.6 X 10 ⁸ bc*	58 X 104 a	
Pasteurized	6.05 X 10 ⁸ c	15 X 104 c	
T. intermedium (cv. Rush)	93.5 X 10 ⁸ a	14 X 10 ⁴ c	
Perennial (P-0006)	94.4 X 10 ⁸ a	32 X 104 b	
Organic (Onas/Madsen)	93.9 X 10 ⁸ a	32 X 10 ⁴ b	
High-input (cv. Penewawa)	70.7 X 10 ⁸ ab	15 X 10 ⁴ c	
[*] Means in the same column fo different (P < 0.05; n=10); ⁺ Cyli			

Field results

- Penewawa reduced soil-borne pathogens and improved apple seedling health
- Perennial wheat mixture reduce pathogens despite poor establishment, but did not improve apple seedling health

Soil populations of Pratenlynd penetrans following cover cro following cover c n at Fuller orchard

Conclusions

- Wheat is a valuable crop to include in a crop rotation to help suppress soil-borne pathogens
- Similar pathogen complexes affect various crop plants, thus findings of value across multiple systems

Conclusions

Breeding programs can be designed to exploit beneficial microbial interactions

- Wheat genotypes differ in their ability to support biological control agents
- Wheat genotypes also differ in their ability to associate and benefit from:
 - Azospirillum (Hoagland et al., 2008)
 - Mycorrhiza (Herrick et al., 1993; Hilderman et al., 2011)

Conclusions

Selection under organic conditions will enhance selection for positive plant-microbial interactions

- Soil microbial community structure differs in organic and conventional systems (Bullock III et al., 2002; Esperschütz, et al., 2007; Reeve et al., 2010)
- Soil microbes impact plant phenotypic traits (yield, disease resistance, flowering time, nutritional content, etc.)
- Varieties selected under organic conditions are not always top performing varieties selected under conventional conditions (Murphy et al., 2007)

Conclusion

Continued development of perennial wheat will improve soil-borne disease suppression and bring other broad agronomic and environmental benefits

Acknowledgements

Organic Farming Research Foundation

- Collaborators - Mark Mazzola (USDA-ARS - Wenatchee, WA)
- Kevin Murphy (WSU Crop and Soils, Pullman, WA)
- Stephen Jones (WSU NW Research and Extension Center, Mount Vernon, WA)

Thank you for your attention